Write a Blog >>
Sat 23 Jan 2016 15:30 - 16:30 at Room St Petersburg II - Poster Session

A universal probabilistic programming language consists of a general-purpose language extended with two probabilistic features: the ability to make random (probabilistic) choices and the ability to make observations. For expressiveness and efficiency, it is useful to consider observations that have nonnegative real likelihoods rather than simple boolean truth values. A program in such a language represents a probabilistic process; the chance of producing a particular answer is determined by the random choices made along the way and the likelihoods of the observations.

Existing probabilistic programming languages typically support a constrained form of observation—such as requiring the distribution in explicit form—or a general weighting operation, like factor. This work explores the interaction between observation and the other computational features of the language. We present a big-step semantics of importance sampling with likelihood weighting for a core universal probabilistic programming language with observation propagation.

Sat 23 Jan

Displayed time zone: Guadalajara, Mexico City, Monterrey change

15:30 - 16:30
Poster SessionPPS at Room St Petersburg II
15:30
60m
Meeting
Insomnia: Types and Modules for Probabilistic Programming
PPS
Aleksey Kliger Xamarin, Inc., Sean Stromsten BAE Systems, Inc.
Pre-print
15:30
60m
Meeting
Finite-depth Higher-order Abstract Syntax Trees for Reasoning about Probabilistic Programs
PPS
Theophilos Giannakopoulos BAE Systems, Inc., Mitchell Wand Northeastern University, Andrew Cobb Northeastern University
Pre-print
15:30
60m
Meeting
Coalgebraic Trace Semantics for Probabilistic Processes: Preliminary Proposal
PPS
Larry Moss Indiana University, Chung-chieh Shan Indiana University, Alexandra Silva Radboud University Nijmegen
Pre-print
15:30
60m
Meeting
Reasoning about Probability and Nondeterminism
PPS
Faris Abou-Saleh University of Oxford, Kwok-Ho Cheung University of Oxford, Jeremy Gibbons University of Oxford, UK
Pre-print
15:30
60m
Meeting
Fixed Points for Markov Decision Processes
PPS
Johannes Hölzl Technische Universität München
Pre-print
15:30
60m
Meeting
A Denotational Semantics of a Probabilistic Stream-Processing Language
PPS
Yohei Miyamoto Graduate School of Informatics, Kyoto University, Kohei Suenaga , Koji Nakazawa Graduate School of Information Science, Nagoya University
Pre-print
15:30
60m
Meeting
Observation Propagation for Importance Sampling with Likelihood Weighting
PPS
Ryan Culpepper Northeastern University
Pre-print
15:30
60m
Meeting
Problems of the Lightweight Implementation of Probabilistic Programming
PPS
Pre-print
15:30
60m
Meeting
Parameterized Probability Monad
PPS
Adam Ścibior University of Cambridge, Andrew D. Gordon Microsoft Research and University of Edinburgh
Pre-print
15:30
60m
Meeting
Reproducing Kernel Hilbert Space Semantics for Probabilistic Programs
PPS
Adam Ścibior University of Cambridge, Bernhard Schölkopf MPI Tuebingen
Pre-print